Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 1 entries in the Bibliography.


Showing entries from 1 through 1


2013

Estimating the propagation characteristics of large-scale traveling ionospheric disturbances using ground-based and satellite data

In this article, the propagation characteristics of large-scale traveling ionospheric disturbances (LS TIDs) are estimated during the geomagnetic storm periods of 14\textendash16 May 2005 and 25\textendash27 September 2011 over South Africa. One and two GPS arrays have been independently considered for the storms of 15 May 2005 and 26 September 2011, respectively. The average periods of dominant modes (≈ 2.5\textendash3.5h) in the time series data were determined by applying wavelet analysis on both ionosonde and GPS data. The consideration of diurnal GPS total electron content (TEC) variability from receivers along three different longitude sectors showed a time shift in TEC enhancement with increasing latitude, the first indication of equatorward motion of the traveling ionospheric disturbances (TIDs). The statistical method (based on GPS radio interferometry) employed shows that these TIDs were mostly propagating nearly equatorward (for both storm periods), which is consistent with the existing literature about storm-induced TIDs. On storm days, TID horizontal velocities have been determined in the range of ≈200\textendash500m/s. The analysis of diurnal TEC response from different stations confirmed that the positive storm effect observed on 15 May 2005 was a result of the large-scale TIDs of wavelength ≈4000 km. On the other hand, the estimated wavelengths of LS TIDs on 26 September 2011 were ≈2400\textendash3400km between 10 and 17 UT. A time lag is observed between the times at which enhancements in TEC, ionosonde foF2, and hmF2 data are revealed, and this has been attributed to the passage of the TID.

Habarulema, John; Katamzi, Zama; McKinnell, Lee-Anne;

Published by: Journal of Geophysical Research: Space Physics      Published on: 12/2013

YEAR: 2013     DOI: 10.1002/2013JA018997

characteristics of large scale TIDs; Geomagnetic storms; ionospheric irregularities



  1